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Abstract

In some circumstances, the standard formulation of the virtual crack closure technique (VCCT) may yield negative values of the
modal contributions to the energy release rate. To avoid such physically meaningless results, a revised formulation is available.
However, the revised VCCT does not take into account possible interpenetration of the crack faces, that may be predicted by the
linearly elastic solution. The present work extends the revised VCCT formulation by introducing suitable contact constraints to
prevent local interpenetration of the crack-tip nodes. By considering open vs. interpenetrated cracks and tensile vs. compressive
crack-tip forces, four cases emerge. For each case, a suitable two-step crack closure process is outlined with the two steps re-
spectively corresponding to fracture modes II and I. The contact pressure force, if present, is evaluated and accounted for in the
computation of the crack closure work. As a result, novel analytical expressions are derived for the modal contributions to the
energy release rate accounting for contact and prevented interpenetration.
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1. Introduction

The virtual crack closure technique (VCCT) is a numerical method used to compute the energy release rate, G, in
the finite element analysis of fracture mechanics problems [Krueger (2004)]. The technique was introduced first for
two-dimensional problems by Rybicki and Kanninen (1977). Later, the VCCT was extended to three-dimensional
problems by Shivakumar et al. (1988). For mixed-mode fracture problems, such as the delamination of composite
materials and interfacial fracture, the VCCT furnishes not only the total G, but also the contributions, GI, GII, and GIII,
associated to the three basic fracture modes [Krueger et al. (2013)].
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Nomenclature

a crack length
B crack width = out-of-plane thickness of cracked body
cxx crack-tip flexibility coefficient = relative displacement in x-direction due to unit forces in x-direction
cxz crack-tip flexibility coefficient = relative displacement in x-direction due to unit forces in z-direction
czx crack-tip flexibility coefficient = relative displacement in z-direction due to unit forces in x-direction
czz crack-tip flexibility coefficient = relative displacement in z-direction due to unit forces in z-direction
C position of crack tip
C− position of crack tip on bottom crack face
C+ position of crack tip on top crack face
C crack-tip flexibility matrix
D position of propagated crack tip
Fx crack-tip force in x-direction
Fc

x crack-tip force in x-direction at local contact
Fz crack-tip force in z-direction
Fc

z crack-tip force in z-direction at local contact
F crack-tip force vector
G energy release rate
GI mode I contribution to energy release rate
GII mode II contribution to energy release rate
kxx crack-tip stiffness coefficient = nodal force in x-direction due to unit displacement in x-direction
kxz crack-tip stiffness coefficient = nodal force in x-direction due to unit displacement in z-direction
kzx crack-tip stiffness coefficient = nodal force in z-direction due to unit displacement in x-direction
kzz crack-tip stiffness coefficient = nodal force in z-direction due to unit displacement in z-direction
K crack-tip stiffness matrix
p distributed contact pressure
qx distributed crack closure force in x-direction
qz distributed crack closure force in z-direction
Qx crack closure force in x-direction
QI

x mode I crack closure force in x-direction
QII

x mode II crack closure force in x-direction
QII,a

x mode II crack closure force in x-direction, sub-step a
QII,b

x mode II crack closure force in x-direction, sub-step b
Qz crack-tip closure force in z-direction
QI

z mode I crack closure force in z-direction
QII

z mode II crack closure force in z-direction
QII,a

z mode II crack closure force in z-direction, sub-step a
QII,b

z mode II crack closure force in z-direction, sub-step b
O origin of reference system
x Cartesian coordinate
x̄ direction of crack-tip force vector corresponding to contact
z Cartesian coordinate
z̄ direction of crack-tip force vector corresponding to mode I fracture
Γ ellipse of crack-tip flexibility
∆a crack length increment
∆A crack area increment
∆ux crack-tip relative displacement in x-direction
∆uc

x crack-tip relative displacement in x-direction at local contact

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2020.11.083&domain=pdf
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∆uI
x mode I crack-tip relative displacement in x-direction

∆uII
x mode II crack-tip relative displacement in x-direction

∆uII,a
x mode II crack-tip relative displacement in x-direction, sub-step a

∆uII,b
x mode II crack-tip relative displacement in x-direction, sub-step b

∆uz crack-tip relative displacement in z-direction
∆uc

z crack-tip relative displacement in z-direction at local contact
∆uI

z mode I crack-tip relative displacement in z-direction
∆uII

z mode II crack-tip relative displacement in z-direction
∆uII,a

z mode II crack-tip relative displacement in z-direction, sub-step a
∆uII,b

z mode II crack-tip relative displacement in z-direction, sub-step b
∆u crack-tip relative displacement vector
∆W crack closure work
∆WI mode I crack closure work
∆WIImode II crack closure work
σz normal stress on crack plane
τxz shear stress on crack plane

Focusing on I/II mixed-mode fracture problems, Valvo (2012) demonstrated that the standard VCCT may be
inappropriate to analyse problems involving highly asymmetric cracks. In fact, physically unacceptable, negative
values for either GI or GII may be calculated. The origin of this shortcoming was identified in the lack of energetic
orthogonality between the Cartesian components of the crack-tip force used to calculate the modal contributions.
Thereafter, Valvo (2015) proposed a physically consistent, revised VCCT, whereas the crack-tip force is decomposed
into the sum of two energetically orthogonal systems of forces. As a result, always non-negative GI and GII are
obtained. Equivalently, the modal contributions to G can be associated to the amounts of work done in a suitable
two-step process of crack closure. The technique was extended also to three-dimensional problems involving I/II/III
mixed-mode fracture by Valvo (2014).

The revised VCCT has been applied successfully to analyse a number of practical fracture problems involving,
e.g., adhesive joints [Sengab and Talreja (2016)], composite beams [Jang and Ahn (2018)], rubber tires [Kelliher
(2018)], and multidirectional fibre-reinforced laminates [Garulli et al. (2020)].

The VCCT can be regarded as the numerical implementation of the crack closure integral introduced by Irwin
(1958). Accordingly, the energy release rate is calculated based on the hypothesis that the energy spent in propagating
the crack is equal to the work that would be done to close the crack by suitable crack closure forces. For open cracks,
the crack closure forces are equal to the stresses acting on the crack faces prior to crack propagation. Nevertheless,
there are cases, in which the elastic solution predicts contact and interpenetration between the crack faces. In such
cases, the crack closure forces must take into account the presence of contact pressures [Laursen (2002)].

The present work extends the previous formulation of the revised VCCT for I/II mixed-mode problems, by intro-
ducing suitable contact constraints to prevent local interpenetration of the crack-tip nodes. Depending on the presence
of interpenetration and compressive forces normal to the crack plane, four cases are identified:

1. open crack in tension;

2. open crack in compression;

3. interpenetrated crack in compression;

4. interpenetrated crack in tension.

The open crack in tension is essentially the case considered by Valvo (2015). The other three cases are analysed here
for the first time.

The paper is organised as follows. In Section 2, Irwin (1958)’s crack closure integral is briefly recalled together
with a short discussion on its possible modification in the presence of contact pressures. In Section 3, a finite element
discretisation of the fracture problem is introduced with particular reference to some concepts introduced by Valvo
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Fig. 1: Crack closure integral for an open crack: (a) initial crack; (b) crack propagation; (c) crack closure.

(2012): the crack-tip flexibility coefficients and the ellipse of crack-tip flexibility. In Section 4, the revised virtual crack
closure technique is presented: for each of the above-mentioned four cases, a suitable crack closure process enabling
fracture mode decomposition is defined. Thus, analytical expressions are derived for the modal contributions to the
energy release rate. In Section 5, some conclusive remarks are given together with directions for future developments.

2. Crack closure integral

2.1. Open crack

Let us consider a planar elastic body with a straight crack of initial length a. A Cartesian reference system, Oxz,
is placed in the body plane with the origin, O, placed at the initial position of the crack tip, C, and the x-axis aligned
with the initial crack direction (Fig. 1a). The material is supposed to be linearly elastic under either plane stress or
plane strain conditions [Timoshenko and Goodier (1951)].

Irwin (1958) observed that the energy spent for crack propagation is equal to the work necessary to close the
extended crack by suitable forces. For an open crack, i.e. when the elastic solution does not predict any interpenetration
of the crack faces (Fig. 1b), the forces needed to close the crack are exactly the same as the stresses acting on the
(bonded) crack faces prior to crack propagation.

Let us imagine that the crack propagates by a small length, ∆a, with the initial crack tip, C, splitting into two
new points, C− and C+, and with a new crack-tip position, D, on the x-axis. To close the crack and restore the initial
situation, distributed forces equal to the stresses initially acting on the segment CD should be applied,

qx (x) = τxz (x) ,

qz (x) = σz (x) ,
(1)

where σz (x) and τxz (x) are the normal and shear stresses acting on the bonded part of the crack plane, respectively.
The actual work done to close the crack is equal to half the virtual work of the distributed crack closure forces,

∆W =
1
2

B
∫ ∆a

0

[
qx (x)∆ux (x) + qz (x)∆uz (x)

]
dx, (2)
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where ∆ux (x) and ∆uz (x) are the relative displacement between the crack faces in the x- and z-directions, respectively,
and B is the thickness of the cracked body in the out-of-plane direction.

The energy release rate is calculated as the work done per unit area of new crack surface in the limit for a vanishing
crack propagation length:

G = lim
∆a→0

∆W
∆A
, (3)

where ∆A = B ∆a is the area of new crack surface created.
By substituting Eqs. (1) and (2) into (3), we obtain:

G = 1
2

lim
∆a→0

1
∆a

∫ ∆a

0

[
τxz (x)∆ux (x) + σz (x)∆uz (x)

]
dx. (4)

For symmetric cracks, the two addends in Eq. (4) correspond to the contributions of fracture modes I and II:

GI =
1
2

lim
∆a→0

1
∆a

∫ ∆a

0
σz (x)∆uz (x) dx,

GII =
1
2

lim
∆a→0

1
∆a

∫ ∆a

0
τxz (x)∆ux (x) dx.

(5)

It should be observed that the simple fracture mode partitioning expressed by Eqs. (5) originates from the splitting
of the stress field into the sum of a symmetric part (mode I) and an antisymmetric part (mode II) with respect to the
crack plane. This partitioning is not valid in general for asymmetric and bimaterial interface cracks.

2.2. Interpenetrated crack

Now, let us consider the possible case, in which the elastic solution predicts interpenetration of the crack faces as a
consequence of crack propagation. When the initial crack of length a (Fig. 2a) propagates by a small length, ∆a, some
overlap occurs in the neighbourhood of the crack tip (Fig. 2b). Indeed, this overlap is prevented by the development
of a contact pressure, p (x), along the interface. Assuming frictionless contact between the crack faces, the contact
pressure will act in the direction normal to the crack plane (Fig. 2c). As a consequence, the forces needed to close the
crack and restore the initial situation should be evaluated by properly accounting for such contact pressure (Fig. 2d):

qx (x) = τxz (x)

qz (x) = σz (x) + p (x) .
(6)

In theory, Eq. (6) may be substituted into (2) to compute the energy release rate. In practice, however, the determina-
tion of p (x), such that ∆uz(x) = 0, may be quite difficult and an analytical treatment of problem may be unfeasible. In
what follows, we will develop a numerical implementation of the local contact problem in the simplifying assumption
that only the crack-tip nodes experience some overlap.
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Fig. 2: Crack closure integral in the event of crack face interpenetration: (a) initial crack; (b) crack propagation with interpenetration; (c) crack
propagation with contact; (d) crack closure accounting for contact forces.

3. Finite element discretisation

3.1. Finite crack propagation

Let us now consider a finite element discretisation of the elasticity problem outlined in the previous Section. For
the sake of simplicity, we consider four-noded plane stress/plane strain elements of constant thickness B, but extension
to different types of elements is possible [Krueger (2004)].

Figure 3a shows a detail of the finite element mesh in the neighbourhood of the crack tip. Here, the crack has the
initial length a and the crack tip coincides with nodes C− and C+, bonded together and located on the bottom and
top crack faces, respectively. Through the crack tip node, concentrated forces are exchanged between the connected
elements. We denote with Fx and Fz the forces applied by the top part of the body onto node C− and with the opposite
quantities the forces applied by the bottom part onto node C+. In the finite element context, such forces play the role of
the distributed stresses, τxz (x) and σz (x), of the continuous elasticity problem. Next, crack propagation is considered
by a small length, ∆a, here equal to the size of the elements connected at the crack tip. Hence, the crack tip moves to
node D, while nodes C− and C+ undergo the relative displacements ∆ux and ∆uz along the x- and z-axes, respectively
(Fig. 3b).
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∆A
, (3)
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G = 1
2

lim
∆a→0

1
∆a

∫ ∆a

0
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dx. (4)
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GI =
1
2

lim
∆a→0

1
∆a

∫ ∆a

0
σz (x)∆uz (x) dx,

GII =
1
2

lim
∆a→0

1
∆a

∫ ∆a

0
τxz (x)∆ux (x) dx.

(5)
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Fig. 3: Virtual crack closure technique: (a) initial crack; (b) crack propagation.

3.2. Crack-tip flexibility coefficients

The magnitude of the crack-tip forces may be evaluated by introducing suitable tie constraints into the model,
e.g. springs with “infinite” (i.e. numerically large) stiffness between nodes C− and C+. As an alternative, the crack-
tip forces can be evaluated as follows. We define the crack-tip flexibility coefficients as the relative displacements
occurring between the crack tip nodes, C− and C+, when the body is subject to unit force loads at the same nodes
[Jerram (1970)]. In particular, we denote with cxx and czx the flexibility coefficients corresponding to the relative
displacement in the x- and z-directions, respectively, produced by unit force loads in the x-direction (Fig. 4a). Besides,
we denote with cxz and czz the flexibility coefficients corresponding to the relative displacement in the x- and z-
directions, respectively, produced by unit force loads in the z-direction (Fig. 4b). By virtue of Betti’s theorem, it is
czx = cxz. The above definition can be used also for practical calculation of the flexibility coefficients by carrying out
two separate auxiliary analyses on the finite element mesh with the propagated crack [Valvo (2012)].

Because of linearity, the relative displacements produced by general (not unit) crack-tip forces are:

∆ux = cxxFx + cxzFz,

∆uz = czxFx + czzFz.
(7)

Inversion of Eqs. (7) furnishes:

Fx = kxx∆ux + kxz∆uz,

Fz = kzx∆ux + kzz∆uz,
(8)

where kxx, kxz = kzx, and kzz are stiffness coefficients, whose expressions are given by Eqs. (A.1) in the Appendix.
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Fig. 4: Flexibility coefficients: (a) unit force loads in the x-direction; (b) unit force loads in the z-direction.

3.3. Matrix notation

It is useful to introduce a more compact matrix notation. We define the crack-tip force vector,

F =
{

Fx

Fz

}
, (9)

the crack-tip relative displacement vector,

∆u =
{
∆ux

∆uz

}
, (10)

and the crack-tip flexibility matrix (symmetric and positive definite),

C =
[
cxx cxz

czx czz

]
. (11)

Equation (7) becomes simply

∆u = C F . (12)
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A crack-tip stiffness matrix (symmetric and positive definite) can be defined as the inverse of the flexibility matrix,

K =
[
kxx kxz

kzx kzz

]
= C−1. (13)

Inversion of Eq. (12) furnishes the matrix version of Eq. (8):

F = K ∆u. (14)

3.4. Ellipse of crack-tip flexibility

The conical section Γ associated with matrix C is defined by the following equation:

cxx x2 + 2cxz xz + czz z2 = 1. (15)

Γ turns out to be an ellipse, here called the ellipse of crack-tip flexibility (Fig. 5). The ellipse helps visualising the
relationship between the directions of the crack-tip force vector, F, and relative displacement vector, ∆u. Namely, it
can be demonstrated that ∆u has the direction of the outer normal to the ellipse at the point of intersection with the
direction of F [Valvo (2012)]. Two particular directions can be identified:

1. the x̄-axis, corresponding to a relative displacement vector, ∆u, parallel to the x-axis: when F has the direction
of x̄, the relative displacement in the z-direction is ∆uz = 0, which means that contact between the crack faces
(at nodes C− and C+) is established;

2. the z̄-axis, corresponding to a relative displacement vector, ∆u, parallel to the z-axis: when F has the direction
of z̄, the relative displacement in the x-direction is ∆ux = 0, which means that pure mode I fracture conditions
are met.

When F falls below the x-axis (red and orange regions in Fig. 5), a compressive force, Fz, is expected at the crack-
tip node in the direction normal to the crack plane (in the configuration with the initial crack). When F falls below the
x̄-axis (orange and yellow regions in Fig. 5), interpenetration of the crack faces is expected (in the configuration with
the propagated crack). When F falls above both the x- and x̄-axes (white region in Fig. 5), a tensile force at the crack
tip and an open propagated crack are expected.

4. Revised virtual crack closure technique

Based on the above, when computing the crack closure forces to evaluate the energy release rate by the virtual
crack closure technique, four cases have to be considered:

1. open crack (∆uz ≥ 0) in tension (Fz ≥ 0), corresponding to the white region in Fig. 5;

2. open crack (∆uz ≥ 0) in compression (Fz < 0), corresponding to the red region in Fig. 5;

3. interpenetrated crack (∆uz < 0) in compression (Fz < 0), corresponding to the orange region in Fig. 5;

4. interpenetrated crack (∆uz < 0) in tension (Fz ≥ 0), corresponding to the yellow region in Fig. 5.
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Fig. 5: Ellipse of crack-tip flexibility.

4.1. Open crack in tension

4.1.1. Energy release rate
If Fz ≥ 0 and ∆uz ≥ 0, the normal crack-tip force is tensile and crack faces will open upon propagation (Fig.

3b). The crack can be closed by applying crack closure forces, Qx and Qz, equal to the forces acting prior to crack
propagation (Fig. 6):

Qx = Fx,

Qz = Fz;
(16)

The crack closure work is:

∆W =
1
2

(Qx ∆ux + Qz ∆uz) . (17)

and the energy release rate turns out to be:

G = ∆W
B ∆a

=
Qx ∆ux

2B ∆a
+

Qz ∆uz

2B ∆a
. (18)

It is worth noting that Eqs. (17) and (18) are the discrete versions of (2) and (4), respectively. Likewise, the two
addends in Eq. (18) can be regarded as the mode II and I contributions, respectively, but only for symmetric cracks.
Nonetheless, the standard VCCT [Krueger (2004)] always assumes this simplistic mode partitioning, which may lead
to physically unacceptable, negative values of GI and GII. The origin of this shortcoming has been found to reside in
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Fig. 6: Crack closure forces for an open crack.

the lack of energetic orthogonality between the Cartesian components of the crack closure forces, Qx and Qz. In fact,
the work done by Qx on the displacements produced by Qz is generally nonzero, and vice versa. Such mutual work is
undefined in sign and can add negatively to the amounts of work used to compute the modal contribution to G [Valvo
(2012)].

By substituting Eqs. (8) and (16) into (18), the following expression of the energy release rate for an open crack is
obtained:

G = 1
2B ∆a

(
kxx∆u2

x + 2kxz∆ux∆uz + kzz∆u2
z

)
. (19)

4.1.2. Fracture mode partitioning
A physically consistent fracture mode partitioning can be established by suitably decomposing the crack closure

force into the sum of two energetically orthogonal systems of forces, i.e. having null mutual work. To this aim, let us
start with the following decomposition of the crack closure force components into mode I and mode II contributions:

Qx = QI
x + QII

x ,

Qz = QI
z + QII

z .
(20)

Correspondingly, the crack-tip relative displacements are decomposed as:

∆ux = ∆uI
x + ∆uII

x ,

∆uz = ∆uI
z + ∆uII

z ,
(21)
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Fig. 7: Two-step closure of an open crack: (a) mode II; (b) mode I.

where, by virtue of Eqs. (7), the mode I contributions to the relative displacements are

∆uI
x = cxxQI

x + cxzQI
z,

∆uI
z = czxQI

x + czzQI
z;

(22)

and the mode II contributions are

∆uII
x = cxxQII

x + cxzQII
z ,

∆uII
z = czxQII

x + czzQII
z .

(23)

According to the revised VCCT [Valvo (2015)], pure mode I is defined as corresponding to a null component of the
crack-tip relative displacement in the x-direction (∆uI

x = 0). Besides, pure mode II is associated to a null component
of the crack closure force in the z-direction (QII

z = 0). This definition assures the energetic orthogonality between the
two systems of crack closure forces, hence a positive definition of GI and GII. The two modal contributions can be
associated to the amounts of work done in a two-step process of closure of the propagated crack.

In the first crack closure step, corresponding to mode II (Fig. 7a), the gap between the crack-tip nodes, C+ and C−,
in the x-direction is completely closed, while no force is applied in the z-direction:

QII
z = 0,

∆uII
x = ∆ux.

(24)
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By introducing Eqs. (24) into (23), and recalling Eqs. (A.2), the mode II crack closure force in the x-direction and
relative displacement in the z-direction are obtained:

QII
x =

1
cxx
∆ux =

kxxkzz − k2
xz

kzz
∆ux,

∆uII
z =

czx

cxx
∆ux = −

kxz

kzz
∆ux.

(25)

In the second crack closure step, corresponding to mode I (Fig. 7b), the remainders of the crack closure forces,
Eqs. (16), are applied:

QI
x = Qx − QII

x ,

QI
z = Qz − QII

z .
(26)

By substituting Eqs. (24) and (25) into (26), and recalling Eqs. (8) and (16), we obtain:

QI
x =

kxz

kzz
(kxz∆ux + kzz∆uz) ,

QI
z = kxz∆ux + kzz∆uz.

(27)

By substituting Eqs. (27) into (22), and simplifying, the mode I crack-tip relative displacements are deduced:

∆uI
x = 0,

∆uI
z =

kxz

kzz
∆ux + ∆uz.

(28)

The amounts of work done by the mode I and II systems of crack closure forces respectively are

∆WI =
1
2

QI
z∆uI

z,

∆WII =
1
2

QII
x∆uII

x .

(29)

Correspondingly, the modal contributions to the energy release rate are

GI =
∆WI

B ∆a
,

GII =
∆WII

B ∆a
.

(30)
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By substituting Eqs. (24), (25), (27), and (28) into (30), the expressions of the modal contributions to the energy
release rate for an open crack in tension are finally obtained:

GI =
1

2B ∆a
1

kzz
(kxz∆ux + kzz∆uz)2 ,

GII =
1

2B ∆a
kxxkzz − k2

xz

kzz
∆u2

x.

(31)

Eqs. (31) are equivalent to the expressions given by Valvo (2015). It can also be proved that the sum of the two
modal contributions is equivalent to the total G as given by Eq. (19).

4.2. Open crack in compression

In the previous Subsection, it has been tacitly assumed that the crack closure forces applied in the first and second
steps do not produce interpenetration of the crack faces. In the first crack closure step, this requires ∆uII

z ≤ ∆uz

(since the crack is open, ∆uz ≥ 0). From the second of Eqs. (25), and recalling Eqs. (8), this condition can be proven
equivalent to the following:

Fz = kzx∆ux + kzz∆uz ≥ 0, (32)

which is always satisfied for an open crack in tension. As concerns the second crack closure step, the non-
interpenetration condition, ∆uI

z = ∆uz − ∆uII
z ≥ 0, is then automatically satisfied.

However, for an open crack in compression, Fz < 0. Thus, Eq. (32) is not satisfied. The first crack closure step,
corresponding to mode II, must be split into two sub-steps:

(a) a first sub-step, where the crack faces are open and a crack closure force, QII,a
x , is applied in the x-direction,

while QII,a
z = 0; the sub-step ends when contact is achieved between the crack-tip nodes, C− and C+, in the

z-direction, which implies ∆uII,a
z = ∆uz; at the same time, the gap between the crack-tip nodes in the x-direction

is partly closed by an amount ∆uII,a
x (Fig. 8a);

(b) a second sub-step, where the crack faces are in contact (∆uII,b
z = 0) and a contact pressure force, P = −QII,b

z > 0,
develops; besides, a crack closure force in the x-direction, QII,b

x , is applied to close the residual gap between C−

and C+ in the x-direction, ∆uII,b
x = ∆ux − ∆uII,a

x (Fig. 8b).

More in detail, adaptation of Eqs. (8) for the first sub-step yields

QII,a
x = kxx∆uII,a

x + kxz∆uII,a
z = kxx∆uII,a

x + kxz∆uz,

QII,a
z = kzx∆uII,a

x + kzz∆uII,a
z = 0.

(33)

Hence,

QII,a
x = −

kxxkzz − k2
xz

kxz
∆uz,

∆uII,a
x = −

kzz

kxz
∆uz.

(34)
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By introducing Eqs. (24) into (23), and recalling Eqs. (A.2), the mode II crack closure force in the x-direction and
relative displacement in the z-direction are obtained:

QII
x =

1
cxx
∆ux =

kxxkzz − k2
xz

kzz
∆ux,

∆uII
z =

czx

cxx
∆ux = −

kxz

kzz
∆ux.

(25)

In the second crack closure step, corresponding to mode I (Fig. 7b), the remainders of the crack closure forces,
Eqs. (16), are applied:

QI
x = Qx − QII

x ,

QI
z = Qz − QII

z .
(26)

By substituting Eqs. (24) and (25) into (26), and recalling Eqs. (8) and (16), we obtain:

QI
x =

kxz

kzz
(kxz∆ux + kzz∆uz) ,

QI
z = kxz∆ux + kzz∆uz.

(27)

By substituting Eqs. (27) into (22), and simplifying, the mode I crack-tip relative displacements are deduced:

∆uI
x = 0,

∆uI
z =

kxz

kzz
∆ux + ∆uz.

(28)

The amounts of work done by the mode I and II systems of crack closure forces respectively are

∆WI =
1
2

QI
z∆uI

z,

∆WII =
1
2

QII
x∆uII

x .

(29)

Correspondingly, the modal contributions to the energy release rate are

GI =
∆WI

B ∆a
,

GII =
∆WII

B ∆a
.

(30)
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By substituting Eqs. (24), (25), (27), and (28) into (30), the expressions of the modal contributions to the energy
release rate for an open crack in tension are finally obtained:

GI =
1

2B ∆a
1

kzz
(kxz∆ux + kzz∆uz)2 ,

GII =
1

2B ∆a
kxxkzz − k2

xz

kzz
∆u2

x.

(31)

Eqs. (31) are equivalent to the expressions given by Valvo (2015). It can also be proved that the sum of the two
modal contributions is equivalent to the total G as given by Eq. (19).
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(since the crack is open, ∆uz ≥ 0). From the second of Eqs. (25), and recalling Eqs. (8), this condition can be proven
equivalent to the following:

Fz = kzx∆ux + kzz∆uz ≥ 0, (32)

which is always satisfied for an open crack in tension. As concerns the second crack closure step, the non-
interpenetration condition, ∆uI

z = ∆uz − ∆uII
z ≥ 0, is then automatically satisfied.

However, for an open crack in compression, Fz < 0. Thus, Eq. (32) is not satisfied. The first crack closure step,
corresponding to mode II, must be split into two sub-steps:

(a) a first sub-step, where the crack faces are open and a crack closure force, QII,a
x , is applied in the x-direction,

while QII,a
z = 0; the sub-step ends when contact is achieved between the crack-tip nodes, C− and C+, in the
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z = ∆uz; at the same time, the gap between the crack-tip nodes in the x-direction

is partly closed by an amount ∆uII,a
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z > 0,
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x , is applied to close the residual gap between C−

and C+ in the x-direction, ∆uII,b
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(a) (b)

Fig. 8: Mode II closure of an open crack in compression: (a) first sub-step; (b) second sub-step.

For the second sub-step, we have

QII,b
x = kxx∆uII,b

x + kxz∆uII,b
z = kxx

(
∆ux − ∆uII,a

x

)
,

QII,b
z = kzx∆uII,b

x + kzz∆uII,b
z = −P.

(35)

Hence, by recalling previous expressions and simplifying,

QII,b
x =

kxx

kxz
(kxz∆ux + kzz∆uz) ,

∆uII,b
x = ∆ux +

kzz

kxz
∆uz,

P = −kzx∆ux − kzz∆uz = −Fz.

(36)

The work done by QII,a
x and QII,b

x in the above described sub-steps is to be ascribed entirely to mode II (the contact
force does not produce any work as ∆uII,b

z = 0). By using Eqs. (34) and (36), and simplifying, we obtain

∆WII =
1
2

(
QII,a

x + QII,b
x

) (
∆uII,a

x + ∆uII,b
x

)
=

1
2

(kxx∆ux + kxz∆uz)∆ux. (37)

At the end of the second sub-step, the crack turns out to be completely closed. Thus, the second crack closure step,
corresponding to mode I, is not necessary for an open crack in compression. Hence, a null mode I crack closure work
is considered for this case, ∆WI = 0.
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(a) (b)

Fig. 9: Interpenetrated crack: (a) theoretical overlap; (b) contact pressure force.

By recalling Eqs. (30), the final expressions of the modal contributions to the energy release rate for an open crack
in compression are obtained:

GI = 0,

GII =
1

2B ∆a
(kxx∆ux + kxz∆uz)∆ux.

(38)

4.3. Interpenetrated crack in compression

In some cases, the elastic solution predicts a theoretical overlap of the crack faces, in particular between the crack-
tip nodes with ∆uz < 0 (Fig. 9a). In practice, such overlap is prevented by the development of contact pressures. Here,
we assume that local contact is limited to the crack-tip nodes, C− and C+, which exchange a contact pressure force, P
(Fig. 9b).

The magnitude of the contact pressure force may be estimated as follows. Let us consider a system of crack-tip
forces representing frictionless local contact between the crack faces:

Fc
x = 0,

Fc
z = −P.

(39)

The corresponding relative displacements can be obtained by substituting Eqs. (39) into (7):

∆uc
x = cxxFc

x + cxzFc
z = −cxzP,

∆uc
z = czxFc

x + czzFc
z = −czzP.

(40)
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Fig. 9: Interpenetrated crack: (a) theoretical overlap; (b) contact pressure force.

By recalling Eqs. (30), the final expressions of the modal contributions to the energy release rate for an open crack
in compression are obtained:

GI = 0,

GII =
1

2B ∆a
(kxx∆ux + kxz∆uz)∆ux.

(38)
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In some cases, the elastic solution predicts a theoretical overlap of the crack faces, in particular between the crack-
tip nodes with ∆uz < 0 (Fig. 9a). In practice, such overlap is prevented by the development of contact pressures. Here,
we assume that local contact is limited to the crack-tip nodes, C− and C+, which exchange a contact pressure force, P
(Fig. 9b).

The magnitude of the contact pressure force may be estimated as follows. Let us consider a system of crack-tip
forces representing frictionless local contact between the crack faces:

Fc
x = 0,

Fc
z = −P.

(39)

The corresponding relative displacements can be obtained by substituting Eqs. (39) into (7):

∆uc
x = cxxFc

x + cxzFc
z = −cxzP,
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z = −czzP.
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Then, by imposing ∆uc
z = ∆uz, and recalling also Eqs. (A.2), we get

∆uc
x =

cxz

czz
∆uz = −

kxz

kxx
∆uz,

P = − 1
czz
∆uz = −

kxxkzz − k2
xz

kxx
∆uz,

(41)

which show that a positive contact pressure force (P > 0) arises for interpenetrated cracks (∆uz < 0).
Again, the modal contributions to G can be evaluated by imagining a two-step process of crack closure. In the first

step, corresponding to mode II (Fig. 10), a crack closure force in the x-direction, QII
x , is applied to close the gap in the

same direction between the crack-tip nodes, C− and C+. Differently from the open crack case, such gap must account
for the contribution due to contact, so that ∆uII

x = ∆ux − ∆uc
x. Besides, a crack closure force in the z-direction, QII

z , is
added to the contact pressure force, P. to make sure that the two crack faces be in contact throughout the crack closure
step, i.e. ∆uII

z = 0. Thus, adaptation of Eqs. (8) yields

QII
x = kxx∆uII

x + kxz∆uII
z = kxx

(
∆ux − ∆uc

x
)
,

QII
z − P = kzx∆uII

x + kzz∆uII
z = kzx

(
∆ux − ∆uc

x
)
.

(42)

By substituting Eqs. (41) into (42), and simplifying, we get

QII
x = kxx∆ux + kxz∆uz = Fx,

QII
z − P = kzx∆ux + kzz∆uz = Fz.

(43)

The crack closure work related to mode II is

∆WII =
1
2

QII
x∆uII

x =
1
2

1
kxx

(kxx∆ux + kxz∆uz)2 . (44)

Eqs. (43) show that at the end of the first crack closure step, the total crack-tip forces acting in the initial con-
figuration are applied. Therefore, there is no need for a second crack closure step, corresponding to mode I, and the
related crack closure work is ∆WI = 0. By recalling Eqs. (30), the modal contributions to the energy release rate for
an interpenetrated crack in compression become

GI = 0,

GII =
1

2B ∆a
1

kxx
(kxx∆ux + kxz∆uz)2 .

(45)

4.4. Interpenetrated crack in tension

The deductions of the previous section are valid as long as a compressive force in the z-direction is present through-
out the crack closure step. This requires QII

z − P < 0 or, by virtue of the second of Eqs. (43), Fz < 0, which clearly
holds for an interpenetrated crack in compression.
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Fig. 10: Crack closure forces for an interpenetrated crack in compression.

For an interpenetrated crack (∆uz < 0) in tension (Fz ≥ 0), a different derivation is required. The crack is again
closed in two steps. In the first step, corresponding to mode II, a crack closure force in the x-direction is applied to
close the gap in the same direction, ∆uII

x = ∆ux−∆uc
x. The initial contact pressure force, P, decreases gradually until it

vanishes at some point. Afterwards, the crack faces open with null contact force between the crack-tip nodes, C− and
C+. The final value of the crack closure force in the x-direction, QII

x , is the same given for an open crack in tension by
Eqs. (25). The mode II crack closure work is

∆WII =
1
2

QII
x∆uII

x =
1
2

kxxkzz − k2
xz

kxxkzz
(kxx∆ux + kxz∆uz)∆ux (46)

In the second step, corresponding to mode I, the remainders of the crack closure forces are applied. These are
equal to the mode I crack closure forces applied for an open crack in tension, Eqs. (27). Also, the associated crack-tip
relative displacements are the same as those given by Eqs. (28). As a consequence, the mode I contribution to the
energy release rate has the same expression of the first of Eqs. (31).

To sum up, the final expressions of the modal contributions to the energy release rate for an interpenetrated crack
in tension are the following:

GI =
1

2B ∆a
1

kzz
(kxz∆ux + kzz∆uz)2 ,

GII =
1

2B ∆a
kxxkzz − k2

xz

kxxkzz
(kxx∆ux + kxz∆uz)∆ux.

(47)

5. Conclusions

It is now well known that the standard VCCT may yield physically inconsistent, negative values of the modal
contributions to the energy release rate. This shortcoming comes out, in particular, when analysing problems of bodies
with highly asymmetric cracks [Valvo (2012)].

In the present work, the physically consistent revised VCCT proposed by Valvo (2015) has been extended by
introducing contact constraints to prevent interpenetration of the crack faces that may be predicted by the linearly
elastic solution. In particular, local contact has been considered between the crack-tip nodes in the finite element
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Then, by imposing ∆uc
z = ∆uz, and recalling also Eqs. (A.2), we get

∆uc
x =

cxz

czz
∆uz = −

kxz

kxx
∆uz,

P = − 1
czz
∆uz = −

kxxkzz − k2
xz

kxx
∆uz,

(41)

which show that a positive contact pressure force (P > 0) arises for interpenetrated cracks (∆uz < 0).
Again, the modal contributions to G can be evaluated by imagining a two-step process of crack closure. In the first

step, corresponding to mode II (Fig. 10), a crack closure force in the x-direction, QII
x , is applied to close the gap in the

same direction between the crack-tip nodes, C− and C+. Differently from the open crack case, such gap must account
for the contribution due to contact, so that ∆uII

x = ∆ux − ∆uc
x. Besides, a crack closure force in the z-direction, QII

z , is
added to the contact pressure force, P. to make sure that the two crack faces be in contact throughout the crack closure
step, i.e. ∆uII
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QII
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x + kxz∆uII
z = kxx
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∆ux − ∆uc

x
)
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QII
z − P = kzx∆uII

x + kzz∆uII
z = kzx
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∆ux − ∆uc

x
)
.

(42)

By substituting Eqs. (41) into (42), and simplifying, we get
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For an interpenetrated crack (∆uz < 0) in tension (Fz ≥ 0), a different derivation is required. The crack is again
closed in two steps. In the first step, corresponding to mode II, a crack closure force in the x-direction is applied to
close the gap in the same direction, ∆uII
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x. The initial contact pressure force, P, decreases gradually until it

vanishes at some point. Afterwards, the crack faces open with null contact force between the crack-tip nodes, C− and
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In the second step, corresponding to mode I, the remainders of the crack closure forces are applied. These are
equal to the mode I crack closure forces applied for an open crack in tension, Eqs. (27). Also, the associated crack-tip
relative displacements are the same as those given by Eqs. (28). As a consequence, the mode I contribution to the
energy release rate has the same expression of the first of Eqs. (31).

To sum up, the final expressions of the modal contributions to the energy release rate for an interpenetrated crack
in tension are the following:
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5. Conclusions

It is now well known that the standard VCCT may yield physically inconsistent, negative values of the modal
contributions to the energy release rate. This shortcoming comes out, in particular, when analysing problems of bodies
with highly asymmetric cracks [Valvo (2012)].

In the present work, the physically consistent revised VCCT proposed by Valvo (2015) has been extended by
introducing contact constraints to prevent interpenetration of the crack faces that may be predicted by the linearly
elastic solution. In particular, local contact has been considered between the crack-tip nodes in the finite element
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mesh with the propagated crack. The contact pressure force, if present, has been evaluated and accounted for in the
computation of the crack closure work. Four cases have emerged from the analysis. For each, a suitable two-step
crack closure process has been outlined with the two steps respectively corresponding to fracture modes II and I. Such
two-step processes need not be implemented in practice in the numerical method, whereas only the final expressions
of the modal contributions to G can be introduced. These are summarised in Table 1. It is an easy task to verify that
all of the obtained expressions furnish positive definite quantities. Besides, it can be verified that continuity is assured
between the four sub-domains of definition.

Table 1: Modal contributions to the energy release rate.

Case Crack-tip relative Crack-tip Modal contributions to
displacement force the energy release rate

Open crack in tension ∆uz ≥ 0 Fz ≥ 0
GI =

1
2B ∆a

1
kzz

(kxz∆ux + kzz∆uz)2

GII =
1

2B ∆a
kxxkzz − k2

xz

kzz
∆u2

x

Open crack in compression ∆uz ≥ 0 Fz < 0
GI = 0

GII =
1

2B ∆a
(kxx∆ux + kxz∆uz)∆ux

Interpenetrated crack in compression ∆uz < 0 Fz < 0
GI = 0

GII =
1

2B ∆a
1

kxx
(kxx∆ux + kxz∆uz)2

Interpenetrated crack in tension ∆uz < 0 Fz ≥ 0
GI =

1
2B ∆a

1
kzz

(kxz∆ux + kzz∆uz)2

GII =
1

2B ∆a
kxxkzz − k2

xz

kxxkzz
(kxx∆ux + kxz∆uz)∆ux

It is worth emphasising that in the present work only a local contact constraint has been considered at the crack-tip
nodes. Extensive contact between the crack faces requires a more complex analysis. Future work will be devoted to
validate the present technique by comparison with results obtained by introducing extensive contact constraints.

Possible future developments include the evaluation of friction between the crack faces and the extension to three-
dimensional I/II/III mixed-mode fracture problems.
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Appendix A. Crack-tip stiffness and flexibility coefficients

The stiffness coefficients obtained from inversion of the crack-tip stiffness matrix, Eq. (13), are

kxx =
czz

cxxczz − c2
xz
,

kxz = −
cxz

cxxczz − c2
xz
= kzx,

kzz =
cxx

cxxczz − c2
xz
.

(A.1)
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Vice versa, the flexibility coefficients can be expressed as functions of the stiffness coefficients as follows:

cxx =
kzz

kxxkzz − k2
xz
,

cxz = −
kxz

kxxkzz − k2
xz
= czx,

czz =
kxx

kxxkzz − k2
xz
.

(A.2)
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mesh with the propagated crack. The contact pressure force, if present, has been evaluated and accounted for in the
computation of the crack closure work. Four cases have emerged from the analysis. For each, a suitable two-step
crack closure process has been outlined with the two steps respectively corresponding to fracture modes II and I. Such
two-step processes need not be implemented in practice in the numerical method, whereas only the final expressions
of the modal contributions to G can be introduced. These are summarised in Table 1. It is an easy task to verify that
all of the obtained expressions furnish positive definite quantities. Besides, it can be verified that continuity is assured
between the four sub-domains of definition.

Table 1: Modal contributions to the energy release rate.

Case Crack-tip relative Crack-tip Modal contributions to
displacement force the energy release rate

Open crack in tension ∆uz ≥ 0 Fz ≥ 0
GI =

1
2B ∆a

1
kzz

(kxz∆ux + kzz∆uz)2

GII =
1

2B ∆a
kxxkzz − k2

xz

kzz
∆u2

x

Open crack in compression ∆uz ≥ 0 Fz < 0
GI = 0

GII =
1

2B ∆a
(kxx∆ux + kxz∆uz)∆ux

Interpenetrated crack in compression ∆uz < 0 Fz < 0
GI = 0

GII =
1

2B ∆a
1

kxx
(kxx∆ux + kxz∆uz)2

Interpenetrated crack in tension ∆uz < 0 Fz ≥ 0
GI =

1
2B ∆a

1
kzz

(kxz∆ux + kzz∆uz)2

GII =
1

2B ∆a
kxxkzz − k2

xz

kxxkzz
(kxx∆ux + kxz∆uz)∆ux

It is worth emphasising that in the present work only a local contact constraint has been considered at the crack-tip
nodes. Extensive contact between the crack faces requires a more complex analysis. Future work will be devoted to
validate the present technique by comparison with results obtained by introducing extensive contact constraints.

Possible future developments include the evaluation of friction between the crack faces and the extension to three-
dimensional I/II/III mixed-mode fracture problems.
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Appendix A. Crack-tip stiffness and flexibility coefficients

The stiffness coefficients obtained from inversion of the crack-tip stiffness matrix, Eq. (13), are

kxx =
czz

cxxczz − c2
xz
,

kxz = −
cxz

cxxczz − c2
xz
= kzx,

kzz =
cxx

cxxczz − c2
xz
.

(A.1)
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Vice versa, the flexibility coefficients can be expressed as functions of the stiffness coefficients as follows:

cxx =
kzz

kxxkzz − k2
xz
,

cxz = −
kxz

kxxkzz − k2
xz
= czx,

czz =
kxx

kxxkzz − k2
xz
.

(A.2)
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